TensionTools Documentation
Release 0.0.7

Marco Raveri

Aug 13, 2020

Full example

1 tensiometer.mcmc_tension

2 tensiometer.gaussian_tension

3 tensiometer.chains_convergence
4 tensiometer.parameter_reporting
5 tensiometer.cosmosis_interface

6 tensiometer.utilities

Python Module Index

Index

13

17

19

21

25

27

TensionTools Documentation, Release 0.0.7

tensiometer is a small python package that extends GetDist capabilities to test the level of agreement/disagreement
between different posterior distributions.

The best place to start is by looking at the worked examples below.

Other examples are provided for specific tasks.

Full example 1

TensionTools Documentation, Release 0.0.7

2 Full example

CHAPTER 1

tensiometer.mcmc_tension

This file contains the functions and utilities to compute agreement and disagreement between two different chains with
Monte Carlo methods.

For more details on the method implemented see arxiv 1806.04649 and arxiv 1912.04880.

tensiometer.mcmc_tension.OptimizeBandwidth_1D (diff _chain, param_names=None,

num_bins=1000)
Compute an estimate of an optimal bandwidth for covariance scaling as in GetDist. This is performed on

whitened samples (with identity covariance), in 1D, and then scaled up with a dimensionality correction.
Parameters
* diff chain-
* param_names —
e num_bins — number of bins used for the 1D estimate
Returns scaling vector for the whitened parameters

tensiometer.mcmc_tension.Scotts_RT (num_params, num_samples)
Compute Scott’s rule of thumb bandwidth covariance scaling. This is the default scaling that is used to compute
the KDE estimate of parameter shifts.

Parameters
* num_params — the number of parameters in the chain.
* num_samples — the number of samples in the chain.
Returns Scott’s scaling.

tensiometer.mcmc_tension.Silvermans_RT (num_params, num_samples)
Compute Silverman’s rule of thumb bandwidth covariance scaling. This is the default scaling that is used to
compute the KDE estimate of parameter shifts.

Parameters

* num_params — the number of parameters in the chain.

https://arxiv.org/pdf/1806.04649.pdf
https://arxiv.org/pdf/1912.04880.pdf

TensionTools Documentation, Release 0.0.7

* num_samples — the number of samples in the chain.
Returns Silverman’s scaling.

tensiometer.mcmc_tension.exact_parameter_ shift (diff chain, param_names=None,

scale=None, method="brute_force’,
feedback=1, **kwargs)

Compute the MCMC estimate of the probability of a parameter shift given an input parameter difference chain.

This function uses a Kernel Density Estimate (KDE) algorithm discussed in (Raveri, Zacharegkas and Hu 19).

If the difference chain contains ng,mples this algorithm scales as O(nsamples) and might require long run times.

For this reason the algorithm is parallelized with the joblib library. To compute the KDE density estimate several

methods are implemented.

In the 2D case this defaults to exact_parameter_shift_2D_frft () unless the kwarg use_fft is False.
Parameters
* diff chain-MCSamples input parameter difference chain

* param_names — (optional) parameter names of the parameters to be used in the calcula-
tion. By default all running parameters.

* scale — (optional) scale for the KDE smoothing. If none is provided the algorithm uses
Silverman’s rule of thumb scaling.

* method — (optional) a string containing the indication for the method to use in the KDE
calculation. This can be very intensive so different techniques are provided.

— method = brute_force is a parallelized brute force method. This method scales as

O(ngamples) and can be afforded only for small tensions. When suspecting a difference
that is larger than 95% other methods are better.

— method = nearest_elimination is a KD Tree based elimination method. For large ten-
sions this scales as O(nsamples 10g(Nsamples)) and in worse case scenarions, with small

tensions, this can scale as O(nZ,,,,.,) but with significant overheads with respect to the

brute force method. When expecting a statistically significant difference in parameters

this is the recomended algorithm.

Suggestion is to go with brute force for small problems, nearest elimination for big problems
with signifcant tensions.

* feedback — (optional) print to screen the time taken for the calculation.

* kwargs — extra options to pass to the KDE algorithm. The nearest_elimination algorithm
accepts the following optional arguments:

— stable_cycle: (default 2) number of elimination cycles that show no improvement in the
result.

— chunk_size: (default 40) chunk size for elimination cycles. For best perfornamces this
parameter should be tuned to result in the greatest elimination rates.

— smallest_improvement: (default 1.e-4) minimum percentage improvement rate before
switching to brute force.

— use_fft: whether to use fft when possible.

Returns probability value and error estimate.

4 Chapter 1. tensiometer.mcmc_tension

https://arxiv.org/pdf/1912.04880.pdf
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples

TensionTools Documentation, Release 0.0.7

tensiometer.mcmc_tension.exact_parameter_shift_2D_f£fft (diff _chain,
param_names=None,
scale=None, nbins=1024,
feedback=1, bound-
ary_correction_order=1,
mult_bias_correction_order=1,

**ewarks)
Compute the MCMC estimate of the probability of a parameter shift given an input parameter difference chain in

2 dimensions and by using FFT. This function uses GetDist 2D fft and optimal bandwidth estimates to perform
the MCMC parameter shift integral discussed in (Raveri, Zacharegkas and Hu 19).

Parameters
* diff chain-MCSamples input parameter difference chain

* param_names — (optional) parameter names of the parameters to be used in the calcula-
tion. By default all running parameters.

* scale — (optional) scale for the KDE smoothing. If none is provided the algorithm uses
GetDist optimized bandwidth.

* nbins — (optional) number of 2D bins for the fft. Default is 1024.

* mult_bias_correction_order — (optional) multiplicative bias correction passed to
GetDist. See get2DDensity ().

* boundary_correction_order — (optional) boundary correction passed to GetDist.
See get2DDensity ().

» feedback - (optional) print to screen the time taken for the calculation.
Returns probability value and error estimate.

tensiometer.mcmc_tension.parameter diff chain (chain_I, chain_2, boost=1)
Compute the chain of the parameter differences between the two input chains. The parameters of the difference
chain are related to the parameters of the input chains, #; and 65 by:

A9591792

This function only returns the differences for the parameters that are common to both chains. This function
preserves the chain separation (if any) so that the convergence of the difference chain can be tested. This function
does not assume Gaussianity of the chain. This functions does assume that the parameter determinations from
the two chains (i.e. the underlying data sets) are uncorrelated. Do not use this function for chains that are
correlated.

Parameters
* chain_1 - MCSamples first input chain with n; samples
* chain_2 - MCSamples second input chain with ny samples

* boost — (optional) boost the number of samples in the difference chain. By default the
length of the difference chain will be the length of the longest chain. Given two chains the
full difference chain can contain ny X ny samples but this is usually prohibitive for realistic
chains. The boost parameters wil increase the number of samples to be boost X max(n1, na).
Default boost parameter is one. If boost is None the full difference chain is going to be
computed (and will likely require a lot of memory and time).

Returns MCSamples the instance with the parameter difference chain.

https://arxiv.org/pdf/1912.04880.pdf
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples.get2DDensity
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples.get2DDensity
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples

TensionTools Documentation, Release 0.0.7

tensiometer.mcmc_tension.parameter_ diff weighted_samples (samples_I, sam-
ples_2, boost=1,
indexes_I=None, in-

dexes_2=None)

Compute the parameter differences of two input weighted samples. The parameters of the difference samples
are related to the parameters of the input samples, 67 and 6 by:

AHEHl—(gQ

This function does not assume Gaussianity of the chain. This functions does assume that the parameter determi-
nations from the two chains (i.e. the underlying data sets) are uncorrelated. Do not use this function for chains
that are correlated.

Parameters

samples_1-WeightedSamples first input weighted samples with n; samples.
samples_2 - WeightedSamples second input weighted samples with no samples.

boost — (optional) boost the number of samples in the difference. By default the length
of the difference samples will be the length of the longest one. Given two samples the full
difference samples can contain n; X ne samples but this is usually prohibitive for realistic
chains. The boost parameters wil increase the number of samples to be boost xmax(ny, ns).
Default boost parameter is one. If boost is None the full difference chain is going to be
computed (and will likely require a lot of memory and time).

indexes_1 — (optional) array with the indexes of the parameters to use for the first sam-
ples. By default this tries to use all parameters.

indexes_2 — (optional) array with the indexes of the parameters to use for the second
samples. By default this tries to use all parameters.

Returns WeightedSamples the instance with the parameter difference samples.

Chapter 1. tensiometer.mcmc_tension

https://getdist.readthedocs.io/en/latest/chains.html#getdist.chains.WeightedSamples
https://getdist.readthedocs.io/en/latest/chains.html#getdist.chains.WeightedSamples
https://getdist.readthedocs.io/en/latest/chains.html#getdist.chains.WeightedSamples

CHAPTER 2

tensiometer.gaussian_tension

This file contains the functions and utilities to compute agreement and disagreement between two different chains
using a Gaussian approximation for the posterior.

For more details on the method implemented see arxiv 1806.04649 and arxiv 1912.04880.

tensiometer.gaussian_tension.Q DM (chain_I, chain_2, prior_chain=None, param_names=None,

cutoff=0.05, prior_factor=1.0)

Compute the value and degrees of freedom of the quadratic form giving the probability of a difference between
the means of the two input chains, in the Gaussian approximation.

This is defined as in (Raveri and Hu 18) to be:

Qor = (01 — 02)(Cy + Co — C1C7 ' Co — CoCi M Cy) (0 — 05)7

where 6; is the parameter mean of the i-th posterior, C the posterior covariance and Cyj the prior covariance.
Qpy is x?2 distributed with number of degrees of freedom equal to the rank of the shift covariance.

Parameters

chain_1 - MCSamples the first input chain.
chain_2 —MCSamples the second input chain.

prior_chain — (optional) the prior only chain. If the prior is not well approximated by
a ranged prior and is informative it is better to explicitly use a prior only chain. If this is
not given the algorithm will assume ranged priors with the ranges computed from the input
chains.

param_names — (optional) parameter names of the parameters to be used in the calcula-
tion. By default all running parameters.

cutoff — (optional) the algorithms needs to detect prior constrained directions (that do
not contribute to the test) from data constrained directions. This is achieved through a
Karhunen—Loeve decomposition to avoid issues with physical dimensions of parameters
and cutoff sets the minimum improvement with respect to the prior that is used. Default is
five percent.

https://arxiv.org/pdf/1806.04649.pdf
https://arxiv.org/pdf/1912.04880.pdf
https://arxiv.org/pdf/1806.04649.pdf
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples

TensionTools Documentation, Release 0.0.7

* prior_factor — (optional) factor to scale the prior covariance. In case of strongly non-
Gaussian posteriors it might be useful to artificially tighten the prior to have less noise in
telling apart parameter space directions that are constrained by data and prior. Default is no
scaling, prior_factor=1.

Returns (Jpy; value and number of degrees of freedom. Since Qpy is x? distributed the proba-
bility to exceed the test can be computed using the cdf method of scipy.stats.chi?2 or
tensiometer.utilities.from chiZ_to_sigma ().

tensiometer.gaussian_tension.Q DMAP (chain_I, chain_2, chain_I12, prior_chain=None,
param_names=None, prior_factor=1.0, feedback=True)
Compute the value and degrees of freedom of the quadratic form giving the goodness of fit loss measure, in

Gaussian approximation.

This is defined as in (Raveri and Hu 18) to be:

— N2 1 2
QDMAP = QMAP - QMAP - QMAP

where Q12,1 is the joint likelihood at maximum posterior (MAP) and Qi;p is the likelihood at MAP for the
two single data sets. In Gaussian approximation this is distributed as:

Qomap ~ X*(Neg + Nig — Negt)
where Neg is the number of effective parameters, as computed by the function tensiometer.
gaussian_tension.get_Neff () for the joint and the two single data sets.
Parameters
* chain_1 - MCSamples the first input chain.
* chain_2 - MCSamples the second input chain.
* chain_12 - MCSamples the joint input chain.

* prior_chain — (optional) the prior chain. If the prior is not well approximated by a
ranged prior and is informative it is better to explicitly use a prior only chain. If this is
not given the algorithm will assume ranged priors with the ranges computed from the input
chain.

* param_names — (optional) parameter names of the parameters to be used in the calcula-
tion. By default all running parameters.

* prior_factor — (optional) factor to scale the prior covariance. In case of strongly non-
Gaussian posteriors it might be useful to artificially tighten the prior to have less noise in
telling apart parameter space directions that are constrained by data and prior. Default is no
scaling, prior_factor=1.

* feedback - logical flag to set whether the function should print a warning every time the
explicit MAP file is not found. By default this is true.

Returns (Jpyap value and number of degrees of freedom. Since Qpyiap is x? distributed the
probability to exceed the test can be computed using the cdf method of scipy.stats.chi?2
or tensiometer.utilities.from _chiZ to_sigma/().

tensiometer.gaussian_tension.Q_ MAP (chain, num_data, prior_chain=None, normaliza-

tion_factor=0.0, prior_factor=1.0, feedback=True)
Compute the value and degrees of freedom of the quadratic form giving the goodness of fit measure at maximum

posterior (MAP), in Gaussian approximation.

This is defined as in (Raveri and Hu 18) to be:

Qmapr = —2In L(6map)

8 Chapter 2. tensiometer.gaussian_tension

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2.html#scipy.stats.chi2
https://arxiv.org/pdf/1806.04649.pdf
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2.html#scipy.stats.chi2
https://arxiv.org/pdf/1806.04649.pdf

TensionTools Documentation, Release 0.0.7

where £(6yap) is the data likelihood evaluated at MAP. In Gaussian approximation this is distributed as:
Quap ~ x*(d — Negr)

where d is the number of data points and N.g is the number of effective parameters, as computed by the function
tensiometer.gaussian_tension.get_Neff ().

Parameters
* chain - MCSamples the input chain.
* num_data — number of data points.

* prior_chain — (optional) the prior chain. If the prior is not well approximated by a
ranged prior and is informative it is better to explicitly use a prior only chain. If this is
not given the algorithm will assume ranged priors with the ranges computed from the input
chain.

* normalization_factor — (optional) likelihood normalization factor. This should
make the likelihood a chi square.

* prior_factor — (optional) factor to scale the prior covariance. In case of strongly non-
Gaussian posteriors it might be useful to artificially tighten the prior to have less noise in
telling apart parameter space directions that are constrained by data and prior. Default is no
scaling, prior_factor=1.

* feedback - logical flag to set whether the function should print a warning every time the
explicit MAP file is not found. By default this is true.

Returns Qyap value and number of degrees of freedom. Since Qnap is x? distributed the prob-
ability to exceed the test can be computed using the cdf method of scipy.stats.chi2 or
tensiometer.utilities.from chiZ_to_sigma /().

tensiometer.gaussian_tension.Q_UDM (chain_I, chain_12, lower_cutoff=1.05, up-

per_cutoff=100.0, param_names=None)
Compute the value and degrees of freedom of the quadratic form giving the probability of a difference between

the means of the two input chains, in update form with the Gaussian approximation.

This is defined as in (Raveri and Hu 18) to be:
Qupm = (01 — 012)(C1 — C12) (01 — 012)"

where 60, is the parameter mean of the first posterior, 615 is the parameter mean of the joint posterior, C the
posterior covariance and Cyy the prior covariance. Qup iS X2 distributed with number of degrees of freedom
equal to the rank of the shift covariance.

In case of uninformative priors the statistical significance of Qup is the same as the one reported by QQpy but
offers likely mitigation against non-Gaussianities of the posterior distribution. In the case where both chains
are Gaussian Qupy is symmetric if the first input chain is swapped 1 < 2. If the input distributions are not
Gaussian it is better to use the most constraining chain as the base for the parameter update.

Parameters
* chain_1 - MCSamples the first input chain.
* chain_12 - MCSamples the joint input chain.

* lower_cutoff — (optional) the algorithms needs to detect prior constrained directions
(that do not contribute to the test) from data constrained directions. This is achieved through
a Karhunen—Loeve decomposition to avoid issues with physical dimensions of parameters
and cutoff sets the minimum improvement with respect to the prior that is used. Default is
five percent.

https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2.html#scipy.stats.chi2
https://arxiv.org/pdf/1806.04649.pdf
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples

TensionTools Documentation, Release 0.0.7

* upper_cutoff — (optional) upper cutoff for the selection of KL. modes.

* param_names — (optional) parameter names of the parameters to be used in the calcula-
tion. By default all running parameters.

Returns Qupy value and number of degrees of freedom. Since Qupy is x? distributed the prob-
ability to exceed the test can be computed using the cdf method of scipy.stats.chi2 or
tensiometer.utilities.from chiZ_to_sigma().

tensiometer.gaussian_tension.Q UDM_KL_components (chain_lI, chain_12,
param_names=None)
Function that computes the Karhunen—Loeve (KL) decomposition of the covariance of a chain with the covari-

ance of that chain joint with another one. This function is used for the parameter shift algorithm in update
form.

Parameters
* chain_1 - MCSamples the first input chain.
* chain_12 - MCSamples the joint input chain.

* param_names — (optional) parameter names of the parameters to be used in the calcula-
tion. By default all running parameters.

Returns the KL eigenvalues, the KL eigenvectors and the parameter names that are used.

tensiometer.gaussian_tension.Q _UDM_ fisher_components (chain_lI, chain_12,
param_names=None)
Compute the decomposition of the Fisher matrix for the first probe in terms of KL modes.

Parameters
* chain_1 - MCSamples the first input chain.
* chain_12 - MCSamples the joint input chain.

* param_names — (optional) parameter names of the parameters to be used in the calcula-
tion. By default all running parameters.

Returns parameter names used in the calculation, values of improvement and the Fisher matrix.

tensiometer.gaussian_tension.Q UDM_get_cutoff (chain_lI, chain_2, chain_12,
prior_chain=None, param_names=None,
prior_factor=1.0)
Function to estimate the cutoff for the spectrum of parameter differences in update form to match Delta Neff.

Parameters
* chain_1 - MCSamples the first input chain.

* chain_2 - MCSamples the second chain that joined with the first one (modulo the prior)
should give the joint chain.

* chain_12 - MCSamples the joint input chain.

* prior_chain-MCSamples (optional) If the prior is not well approximated by a ranged
prior and is informative it is better to explicitly use a prior only chain. If this is not given the
algorithm will assume ranged priors with the ranges computed from the input chain.

* param_names — (optional) parameter names of the parameters to be used in the calcula-
tion. By default all running parameters.

* prior_factor — (optional) factor to scale the prior covariance. In case of strongly non-
Gaussian posteriors it might be useful to artificially tighten the prior to have less noise in

10 Chapter 2. tensiometer.gaussian_tension

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2.html#scipy.stats.chi2
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples

TensionTools Documentation, Release 0.0.7

telling apart parameter space directions that are constrained by data and prior. Default is no
scaling, prior_factor=1.

Returns the optimal KL cutoff, KL eigenvalues, KL eigenvectors and the parameter names that are
used.

tensiometer.gaussian_tension.gaussian_approximation (chain, param_names=None)
Function that computes the Gaussian approximation of a given chain.

Parameters
* chain - MCSamples the input chain.

* param_names — (optional) parameter names to restrict the Gaussian approximation. If
none is given the default assumes that all parameters should be used.

Returns GaussianND object with the Gaussian approximation of the chain.

tensiometer.gaussian_tension.get_MAP_loglike (chain, feedback=True)
Utility function to obtain the data part of the maximum posterior for a given chain. The best possibility is that a
separate file with the posterior explicit MAP is given. If this is not the case then the function will try to get the
likelihood at MAP from the samples. This possibility is far more noisy in general.

Parameters
* chain - MCSamples the input chain.

* feedback - logical flag to set whether the function should print a warning every time the
explicit MAP file is not found. By default this is true.

Returns the data log likelihood at maximum posterior.

tensiometer.gaussian_tension.get_Neff (chain, prior_chain=None, param_names=None,

prior_factor=1.0)
Function to compute the number of effective parameters constrained by a chain over the prior. The number of
effective parameters is defined as in Eq. (29) of (Raveri and Hu 18) as:

Neg = N — tr[C;*Cp]
where N is the total number of nominal parameters of the chain, Cyy is the covariance of the prior and C,, is the
posterior covariance.
Parameters
* chain - MCSamples the input chain.

* prior_chain — (optional) the prior chain. If the prior is not well approximated by a
ranged prior and is informative it is better to explicitly use a prior only chain. If this is
not given the algorithm will assume ranged priors with the ranges computed from the input
chain.

* param_names — (optional) parameter names to restrict the calculation of N.g. If none is
given the default assumes that all running parameters should be used.

* prior_factor — (optional) factor to scale the prior covariance. In case of strongly non-
Gaussian posteriors it might be useful to artificially tighten the prior to have less noise in
telling apart parameter space directions that are constrained by data and prior. Default is no
scaling, prior_factor=1.

Returns the number of effective parameters.

tensiometer.gaussian_tension.get_prior_covariance (chain, param_names=None)
Utility to estimate the prior covariance from the ranges of a chain. The flat range prior covariance (link) is given

11

https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://getdist.readthedocs.io/en/latest/gaussian_mixtures.html#getdist.gaussian_mixtures.GaussianND
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://arxiv.org/pdf/1806.04649.pdf
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)

TensionTools Documentation, Release 0.0.7

by:

(maz(p;) — mm(pi))2

Cij = 9y 12

Parameters
* chain - MCSamples the input chain.
* param_names — optional choice of parameter names to restrict the calculation.

Returns the estimated covariance of the prior.

12 Chapter 2. tensiometer.gaussian_tension

https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples

CHAPTER 3

tensiometer.chains_convergence

This file contains some functions to study convergence of the chains and to compare the two posteriors.

tensiometer.chains_convergence.GR_test (chains, param_names=None)
Function performing the Gelman Rubin (GR) test (described in Gelman and Rubin 92 and Brooks and Gelman
98) on a list of MCSamples or on a single MCSamples with different sub-chains. This test compares the
variation of the mean across a pool of chains with the expected variation of the mean under the pdf that is being
sampled. If we define the covariance of the mean as:

Cij = CovC(MeanS (9))”
and the mean covariance as:
Mij = Meanc[Covs(G)ij]

then we seek to maximize:

;0709

—1= -
R N, 0160

where the subscript ¢ means that the statistics is computed across chains while the subscrit s indicates that it

is computed across samples. In this case the maximization is solved by finding the maximum eigenvalue of
CM~1L.

Parameters
* chains —single or list of MCSamples

* param_names — names of the parameters involved in the test. By default uses all non-
derived parameters.

Returns value of the GR test and corresponding parameter combination

tensiometer.chains_convergence.GR_test_from_samples (samples, weights)
Lower level function to perform the Gelman Rubin (GR) test. This works on a list of samples from differ-
ent chains and corresponding weights. Refer to tensiometer.chains convergence.GR_test () for
more details of what this function is doing.

13

http://www.stat.columbia.edu/~gelman/research/published/itsim.pdf
http://www.stat.columbia.edu/~gelman/research/published/brooksgelman2.pdf
http://www.stat.columbia.edu/~gelman/research/published/brooksgelman2.pdf
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples

TensionTools Documentation, Release 0.0.7

Parameters
* samples - list of samples from different chains
* weights — weights of the samples for each chain
Returns value of the GR test and corresponding parameter combination

tensiometer.chains_convergence.GRn_test (chains, n, thetaO=None, param_names=None,
feedback=0, optimizer="ParticleSwarm’,

**kwargs)
Multi dimensional higher order moments convergence test. Compares the variation of a given moment among

the population of chains with the expected variation of that quantity from the samples pdf.

We first build the k order tensor of parameter differences around a point o:

QW = Qi i = (0, —0i) - (6;, — 03,)
then we build the tensor encoding its covariance across chains
Vir = Var.(Es[Q™))
which is a 2k and then build the second tensor encoding the mean in chain moment:

My = Mean (E,[(Q™ — E,[Q™]) ® (@ — E,[Q™])])
where we have suppressed all indexes to not crowd the notation.

Then we maximize over parameters:

V]\492k

Rn —1= maXeW
where §2* is the tensor product of 6 for 2k times.

Differently from the 2D case this problem has no solution in terms of eigenvalues of tensors so far and the
solution is obtained by numerical minimization with the pymanopt library.

Parameters
* chains —single or list of MCSamples
* n — order of the moment
* theta0 - center of the moments. By default equal to the mean

* param_names — names of the parameters involved in the test. By default uses all non-
derived parameters.

» feedback - level of feedback. O=no feedback, >0 increasingly chatty

* optimizer — choice of optimization algorithm for pymanopt. Default is ParticleSwarm,
other possibility is TrustRegions.

* kwargs — keyword arguments for the optimizer.
Returns value of the GR moment test and corresponding parameter combination

tensiometer.chains_convergence.GRn_test_1D (chains, n, param_name, thetaO=None)
One dimensional higher moments test. Compares the variation of a given moment among the population of
chains with the expected variation of that quantity from the samples pdf.

This test is defined by:

_ Var.(Mean, (0 — 0o)")

B (60) =1 = Mean,(Var (6 — 6p)™)

14 Chapter 3. tensiometer.chains_convergence

https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples

TensionTools Documentation, Release 0.0.7

where the subscript ¢ means that the statistics is computed across chains while the subscrit s indicates that it is
computed across samples.

Parameters
* chains - single or list of MCSamples
* n — order of the moment
* param_name — names of the parameter involved in the test.
* theta0 - center of the moments. By default equal to the mean.

Returns value of the GR moment test and corresponding parameter combination (an array with one
since this works in 1D)

tensiometer.chains_convergence.GRn_test_1D_samples (samples, weights, n,

thetaO=None)
Lower level function to compute the one dimensional higher moments test. This works on a list of sam-

ples from different chains and corresponding weights. Refer to tensiometer.chains_convergence.
GRn_test_1D () for more details of what this function is doing.

Parameters
* samples - list of samples from different chains
* weights — weights of the samples for each chain
* n — order of the moment
* theta0 - center of the moments. By default equal to the mean.

Returns value of the GR moment test and corresponding parameter combination (an array with one
since this works in 1D)

tensiometer.chains_convergence.GRn_test_from samples (samples, weights, n,
thetaO=None, feedback=0,
optimizer="ParticleSwarm’,
**kwargs)

Lower level function to compute the multi dimensional higher moments test. This works on a list of sam-
ples from different chains and corresponding weights. Refer to tensiometer.chains convergence.
GRn_test () for more details of what this function is doing.

Parameters
* samples - list of samples from different chains
* weights — weights of the samples for each chain
* n — order of the moment
* theta0 - center of the moments. By default equal to the mean
» feedback - level of feedback. O=no feedback, >0 increasingly chatty

* optimizer — choice of optimization algorithm for pymanopt. Default is ParticleSwarm,
other possibility is TrustRegions.

* kwargs — keyword arguments for the optimizer.

Returns value of the GR moment test and corresponding parameter combination

15

https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples

TensionTools Documentation, Release 0.0.7

16 Chapter 3. tensiometer.chains_convergence

CHAPTER 4

tensiometer.parameter_reporting

This file contains some utilities to report parameter results in a nice way.

tensiometer.parameter_reporting.get_PJHPD_bounds (chain, param_names, levels)
Compute some estimate of the global ML confidence interval as described in https://arxiv.org/pdf/2007.01844.
pdf

Parameters
* chain - MCSamples the input chain.

* param_names — optional choice of parameter names to restrict the calculation. Default is
all parameters.

* levels — array with confidence levels to compute, i.e. [0.68, 0.95]
Returns an array with the bounds for each parameter.

tensiometer.parameter_reporting.get_best_fit_params (chain, param_names)
Utility to compute the parameter best fit. This tries to load the best fit from file and if it fails reports the best fit
from samples (which could be noisy).

Parameters
* chain - MCSamples the input chain.

* param_names — optional choice of parameter names to restrict the calculation. Default is
all parameters.

Returns an array with the best fit.

tensiometer.parameter_reporting.get_mean (chain, param_names)
Utility to compute the parameter mean. Mostly this is an utility to get the mean from parameter names rather
than parameter indexes as we would do in GetDist.

Parameters
* chain - MCSamples the input chain.

* param_names — optional choice of parameter names to restrict the calculation. Default is
all parameters.

17

https://arxiv.org/pdf/2007.01844.pdf
https://arxiv.org/pdf/2007.01844.pdf
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples

TensionTools Documentation, Release 0.0.7

Returns an array with the mean.

tensiometer.parameter_reporting.get_modeld (chain, param_names)
Utility to compute the peak of the 1d posterior distribution for all parameters (parameter 1d mode). This depends
and relies on the precomputed KDE smoothing so one can feed different analysis settings to change that.

Parameters
* chain - MCSamples the input chain.

* param_names — optional choice of parameter names to restrict the calculation. Default is
all parameters.

Returns an array with the 1d mode.

tensiometer.parameter_reporting.parameter_table (chain, param_names,
use_peak=False, use_best_fit=True,
use_PJHPD_bounds=False, ncol=1,
*rkwargs)
Generate latex parameter table with summary results.

Parameters
* chain - MCSamples the input chain.

* param_names — optional choice of parameter names to restrict the calculation. Default is
all parameters.

* use_peak — whether to use the peak of the 1d distribution instead of the mean. Default is
False.

* use_best_fit — whether to include the best fit either from explicit minimization or sam-
ple. Default True.

* use_PJHPD_bounds — whether to report PJHPD bounds. Default False.
* ncol — number of columns for the table. Default 1.

* analysis_settings — optional analysis settings to use.

* kwargs — arguments for ResultTable

Returns a ResultTable

18 Chapter 4. tensiometer.parameter_reporting

https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://getdist.readthedocs.io/en/latest/types.html#getdist.types.ResultTable
https://getdist.readthedocs.io/en/latest/types.html#getdist.types.ResultTable

CHAPTER B

tensiometer.cosmosis_interface

File with tools to interface Cosmosis chains with GetDist.

tensiometer.cosmosis_interface.MCSamplesFromCosmosis (chain_root,
param_label_dict=None,

name_tag=None, set-
tings=None)
Function to import Cosmosis chains in GetDist.

Parameters
* chain_root — the name and path to the chain or the path to the folder that contains it.

* param_ label_ dict - dictionary with the mapping between parameter names and pa-
rameter labels, since Cosmosis does not save the labels in the chain.

* name_tag — a string with the name tag for the chain.
* settings — dictionary of analysis settings to override defaults
Returns The MCSamples instance

tensiometer.cosmosis_interface.get_cosmosis_info (file)
Parse a file to get all the information about a Cosmosis run.

Parameters f£ile — path and name of the file to parse.
Returns a list of strings with the cosmosis parameters for the run.

tensiometer.cosmosis_interface.get_maximum_ likelihood (chain_root,
param_label_dict)

Import the maximum likelihood file for a Cosmosis run, if present.
Parameters
* chain_root — name of the chain file or the folder that contains it.

* param_label_dict - dictionary with the mapping between the parameter names and
the labels.

Returns BestFit the best fit object.

19

https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://getdist.readthedocs.io/en/latest/types.html#getdist.types.BestFit

TensionTools Documentation, Release 0.0.7

tensiometer.cosmosis_interface.get_name_tag (info)
Get the name tag for a chain given the a list of strings containing the cosmosis run parameter informations.

Parameters info — a list of strings with the cosmosis parameters for the run.
Returns a string with the name tag if any, otherwise returns none.

tensiometer.cosmosis_interface.get_param_labels (info, param_names,

param_label_dict)
Get the labels for the parameter names of a Cosmosis run.

Parameters

* info — alist of strings with the cosmosis parameters for the run.

* param_names — a list of strings with the parameter names.

* param_label dict - a dictionary with the mapping between names and labels.
Returns a list of strings with the parameter labels.

tensiometer.cosmosis_interface.get_param_names (info)
Get the parameter names for a Cosmosis run.

Parameters info — a list of strings with the cosmosis parameters for the run.
Returns a list of strings with the parameter names.

tensiometer.cosmosis_interface.get_ranges (info, param_names)
Get the ranges for the parameters from the info file.

Parameters
* info — a list of strings with the cosmosis parameters for the run.
* param_names — a list with the parameter names.

Returns a dictionary with the parameter ranges.

tensiometer.cosmosis_interface.get_sampler_ type (info)
Get the sampler type for a chain given the a list of strings containing the cosmosis run parameter informations.
To process the sampler type the function defines internally a dictionary with the mapping from sampler name to
sampler type.

Parameters info — a list of strings with the cosmosis parameters for the run.
Returns a string with the sampler type if any, otherwise returns none.

tensiometer.cosmosis_interface.polish_samples (chain)
Remove fixed parameters and samples with some parameter that is Nan from the input chain.

Parameters chain — MCSamples the input chain.

Returns MCSamples the polished chain.

20 Chapter 5. tensiometer.cosmosis_interface

https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples

CHAPTER O

tensiometer.utilities

This file contains some utilities that are used in the tensiometer package.

tensiometer.utilities.KL_decomposition (matrix_a, matrix_b)
Computes the Karhunen—Loeve (KL) decomposition of the matrix A and B.

Notice that B has to be real, symmetric and positive.
The algorithm is taken from this link. The algorithm is NOT optimized for speed but for precision.
Parameters
e matrix_a — the first matrix.
* matrix b - the second matrix.
Returns the KL eigenvalues and the KL eigenvectors.

tensiometer.utilities.QR_inverse (matrix)
Invert a matrix with the QR decomposition. This is much slower than standard inversion but has better accuracy

for matrices with higher condition number.
Parameters matrix — the input matrix.
Returns the inverse of the matrix.

tensiometer.utilities.bernoulli_thin (chain, temperature=1, num_repeats=1)
Function that thins a chain with a Bernoulli process.

Parameters
* chain - MCSamples the input chain.

* temperature — temperature of the Bernoulli process. If T=1 then this produces a unit
weight chain.

* num_repeats — number of repetitions of the Bernoulli process.

Returns a MCSamples chain with the reweighted chain.

21

http://fourier.eng.hmc.edu/e161/lectures/algebra/node7.html
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples

TensionTools Documentation, Release 0.0.7

tensiometer.utilities.clopper_pearson_binomial_trial (k, n, alpha=0.32)
http://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval alpha confidence intervals for a binomial
distribution of k expected successes on n trials.

Parameters

* k — number of success.

* n — total number of trials.

* alpha — (optional) confidence level.
Returns lower and upper bound.

tensiometer.utilities.from_chi2_to_sigma (val, dofs, exact_threshold=6)
Computes the effective number of standard deviations for a chi squared variable. This matches the probabil-
ity computed from the chi squared variable to the number of standard deviations that an event with the same
probability would have had in a Gaussian distribution as in Eq. (G1) of (Raveri and Hu 18).

n¢f (x, dofs) = V2Erf ' (CDF (x 2. (2)))
For very high statistical significant events this function switches from the direct formula to an accurate asyntotic
expansion.
Parameters
* val — value of the chi2 variable
* dofs — number of degrees of freedom of the chi2 variable

* exact_threshold — (default 6) threshold of value/dofs to switch to the asyntotic for-
mula.

Returns the effective number of standard deviations.

tensiometer.utilities.from_confidence_to_sigma (P)
Transforms a probability to effective number of sigmas. This matches the input probability with the number of
standard deviations that an event with the same probability would have had in a Gaussian distribution as in Eq.
(G1) of (Raveri and Hu 18).

nf(P) = V2Erf 1 (P)

Parameters P — the input probability.
Returns the effective number of standard deviations.

tensiometer.utilities.from_sigma_to_confidence (nsigma)
Gives the probability of an event at a given number of standard deviations in a Gaussian distribution.

Parameters nsigma — the input number of standard deviations.
Returns the probability to exceed the number of standard deviations.

tensiometer.utilities.get_separate_mcsamples (chain)
Function that returns separate MCSamp les for each sampler chain.

Parameters chain — MCSamples the input chain.
Returns list of MCSamples with the separate chains.

tensiometer.utilities.make_list (elements)
Checks if elements is a list. If yes returns elements without modifying it. If not creates and return a list with
elements inside.

Parameters elements — an element or a list of elements

22 Chapter 6. tensiometer.utilities

http://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval
https://arxiv.org/pdf/1806.04649.pdf
https://arxiv.org/pdf/1806.04649.pdf
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples

TensionTools Documentation, Release 0.0.7

Returns a list containing elements.

tensiometer.utilities.random_samples_reshuffle (chain)
Performs a coherent random reshuffle of the samples.

Parameters chain —MCSamples the input chain.
Returns a MCSamples chain with the reshuffled chain.
Full documentation for the modules.

* genindex

23

https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples
https://getdist.readthedocs.io/en/latest/mcsamples.html#getdist.mcsamples.MCSamples

TensionTools Documentation, Release 0.0.7

24 Chapter 6. tensiometer.utilities

Python Module Index

t

tensiometer.
tensiometer.
.gaussian_tension, 7
tensiometer.
tensiometer.
tensiometer.

tensiometer

chains_convergence, 13
cosmosis_interface, 19

mcmc_tension, 3
parameter_reporting, 17
utilities, 21

25

TensionTools Documentation, Release 0.0.7

26 Python Module Index

Index

B

bernoulli_thin () (in module tensiometer.utilities),
21

C

clopper_pearson_binomial_trial () (in mod-
ule tensiometer.utilities), 21

E

exact_parameter_shift () (in module tensiome-
ter.mcmc_tension), 4

exact_parameter_shift_2D_fft () (in module
tensiometer.mcmc_tension), 4

F

from_chi2_to_sigma ()
ter.utilities), 22

from_confidence_to_sigma ()
siometer.utilities), 22

from_sigma_to_confidence ()
siometer.utilities), 22

(in module tensiome-

(in module ten-

(in module ten-

G

gaussian_approximation () (in module tensiome-
ter.gaussian_tension), 11

get_best_fit_params () (in module tensiome-
ter.parameter_reporting), 17

get_cosmosis_info () (in module tensiome-
ter.cosmosis_interface), 19
get_MAP_loglike () (in module tensiome-

ter.gaussian_tension), 11
get_maximum_likelihood () (in module tensiome-
ter.cosmosis_interface), 19

get_mean () (in module tensiome-
ter.parameter_reporting), 17

get_modeld () (in module tensiome-
ter.parameter_reporting), 18

get_name_tag() (in module tensiome-

ter.cosmosis_interface), 19

get_Neff () (in module tensiometer.gaussian_tension),
11

get_param_labels () (in module tensiome-
ter.cosmosis_interface), 20

get_param_names () (in module tensiome-
ter.cosmosis_interface), 20

get_PJHPD_bounds () (in module tensiome-
ter.parameter_reporting), 17

get_prior_covariance () (in module tensiome-
ter.gaussian_tension), 11

get_ranges () (in module tensiome-
ter.cosmosis_interface), 20

get_sampler_type () (in module tensiome-

ter.cosmosis_interface), 20
get_separate_mcsamples () (in module tensiome-
ter.utilities), 22
GR_test () (in module
ter.chains_convergence), 13
GR_test_from_samples () (in module tensiome-
ter.chains_convergence), 13

tensiome-

GRn_test () (in module tensiome-
ter.chains_convergence), 14
GRn_test_1D () (in module tensiome-

ter.chains_convergence), 14
GRn_test_1D_samples () (in module tensiome-

ter.chains_convergence), 15
GRn_test_from_samples () (in module tensiome-

ter.chains_convergence), 15

K

KL_decomposition ()
ter.utilities), 21

(in module tensiome-

M

make_list () (in module tensiometer.utilities), 22
MCSamplesFromCosmosis () (in module tensiome-
ter.cosmosis_interface), 19

O

OptimizeBandwidth_1D () (in module tensiome-

27

TensionTools Documentation, Release 0.0.7

ter.mcmc_tension), 3

P

parameter_diff_chain () (in module tensiome-
ter.mcmc_tension), 5

parameter_diff_weighted_samples () (in
module tensiometer.mcmc_tension), 5

parameter_table () (in module tensiome-
ter.parameter_reporting), 18

polish_samples () (in module tensiome-

ter.cosmosis_interface), 20

Q

Q_DM () (in module tensiometer.gaussian_tension), 7
Q_DMAP () (in module tensiometer.gaussian_tension), 8
Q_MAP () (in module tensiometer.gaussian_tension), 8
Q_UDM () (in module tensiometer.gaussian_tension), 9
Q_UDM_fisher_components () (in module ten-
siometer.gaussian_tension), 10
Q_UDM_get_cutoff () (in module tensiome-
ter.gaussian_tension), 10
Q_UDM_KI_components () (in module tensiome-
ter.gaussian_tension), 10
QR_inverse () (in module tensiometer.utilities), 21

R

random_samples_reshuffle () (in module ten-
siometer.utilities), 23

S

Scotts_RT () (in module tensiometer.mcmc_tension),
3

Silvermans_RT () (in module tensiome-
ter.mcmc_tension), 3

T

tensiometer.chains_convergence (module),
13

tensiometer.cosmosis_interface (module),
19

tensiometer.gaussian_tension (module), 7

tensiometer.mcmc_tension (module), 3

tensiometer.parameter_reporting (module),
17

tensiometer.utilities (module),21

28

Index

	tensiometer.mcmc_tension
	tensiometer.gaussian_tension
	tensiometer.chains_convergence
	tensiometer.parameter_reporting
	tensiometer.cosmosis_interface
	tensiometer.utilities
	Python Module Index
	Index

